Integers vary wildly in how "divisible" they are. One way to measure divisibility is to add all the divisors. This leads to 3 categories of whole numbers: abundant, deficient, and perfect numbers. We show there are an infinite number of abundant and deficient numbers, and then talk about what is known about perfect numbers. In particular, for even perfect numbers, each one corresponds to a Mersenne Prime.
Integers vary wildly in how "divisible" they are. One way to measure divisibility is to add all the divisors. This leads to 3 categories of whole numbers: abundant, deficient, and perfect numbers. We show there are an infinite number of abundant and deficient numbers, and then talk about what is known about perfect numbers. In particular, for even perfect numbers, each one corresponds to a Mersenne Prime.