# Matrix Groups

Matrices are a great example of infinite, nonabelian groups. Here we introduce matrix groups with an emphasis on the general linear group and special linear group. The general linear group is written as GLn(F), where F is the field used for the matrix elements. The most common examples are GLn(R) and GLn(C). Similarly, the special linear group is written as SLn.

Matrices are a great example of infinite, nonabelian groups. Here we introduce matrix groups with an emphasis on the general linear group and special linear group. The general linear group is written as GLn(F), where F is the field used for the matrix elements. The most common examples are GLn(R) and GLn(C). Similarly, the special linear group is written as SLn.

Course Page
Course Description
Abstract Algebra deals with groups, rings, fields, and modules. These are abstract structures which appear in many different branches of mathematics, including geometry, number theory, topology, and more. They even appear in scientific topics such as quantum mechanics.